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ABSTRACT

H J U  -• I The present paper studies 41~e linear compleinentarity problem

of finding vectors x and y in R~ such that c + Dx + y > 0,

b - x > O  and xT( c + D x + y )  yT (b _ x) = 0  ‘wfiere D i sa
Wh ~c. ~~ &Z-matrix and b > 0. Complententarity problems of th s nature ~~ise~~~

Ler o3camp)..2 from the minimization of certain quadratic functions subject

to upper and lower bounds on the variables • Two least-element character-

izatlons of solutions to the above linear complementarity problem are

~( ~ LJ
j  established first. Next , a new and direct method to solve this class

of problems, which depends on the idea of frleast—eiemerit so1ution~~~s

presented. Finally, applications and computational experience with
~ L its Implementation are discussed.
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1. INTROLUCTION

t
.3~ J The present paper is concerned with the linear complemente.rity

problem of finding vectors x, y € R2 such that

U

U (1.1) 
- 

V

T 

= b - x > O

u x = v y = O

U

where b C R~, c ~ R~ and D C R11 X fl~ We denote problem (1.1) by the

3 Li triple (b, C, D). If D Is symmetric, which incidentally, is not assumed

in this paper, then (1.1) is precisely the Kuhn-Tucker optimality

conditions for the quadratic program of finding a vector x C to

~~~1 [
1 

(1.2) minimize ~~ + ~ x~mc subject to x < b

It is clear that any quadratic program of minimizing a quadratic function

subject to upper and lower bounds on the variables can be cast in the

— form (1.2).

. The theory and applications of the linear complementarity

1. problems with Z-matrices (to be defined in the next section), which,

with the assumption of symmetry on the matrices, correspond to the

• minimization of certain quadratic functions subject to lower bounds on

1

- .

I I ~~~~~.
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the variables, have received much attention in the literature [2],

[7], [8], [9), [10], [ 18), [ 19], [22). Recently, many applications

of both problems (1.1) and (1.2) have appeared in various contexts;

4 • 

to mention a few, the unilateral Dirlchlet problem with two constraints
(21] leads to problem (1.1) where D Is a Z-matrix ; the taut string

problem [23 ] which has its own applications in Inventory theory and

statistics, is ~ special case of (1.2) where the matrix D is

Minkowski and tridiagonal; and Cheng’s salary administration model (3) ]
gives rise to a problem of the form (1.2) where the matrix 1) = nI~~_ e~e~1’ with I~ the identity matrix of order n and e~ = (i,...,1) C ?. j
In all these instances (and many others) the matrix D ~ Z.

Several recent papers ([7), [8), [9], [12), [16), [22]) have L
demonstrated that many linear coinplemsnta,rity problems have solutions

which are ‘least elementd’ of subsets of Euclidean space. In an earlier

paper [7] , R. W. Cottle and the author summarized this least—element

aspect of the solutions for various classes of linear complementarIty

problems . We focused on the class ~ of square matrices which was

introduced by I4angasarian [lZ~] in formulat ing the linear complementarity

problems as linear programs and which consists of square matrices¶ satisfying the two conditions: (i)  ~ C = Y and (ii) r X + a y > 0 [
for some r, a C and where X and Y are Z-tnatrices. We

demonstrated that linear complementarity problems with matrices in (~
have solutions which can be obtained as least elements of polyhedral

sets and that the class (‘ contains all the other classes of matrices

considered in [lu] , [15] and in particular , all those previously 
known2
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classes of matrices ([8), [9), [12], [22]) for which this solution

characterization holds. Despite the fact that C contains many

interesting matrices, e.g. those enumerated in the last table in [15],

not too many realizations of the linear complementarity problem which

yield matrices belonging to C have been seen. Of course, as mentioned

earlier , complementarity problems with Z-matrices (which clearly belong

to C )  have many applications, e.g. see [18]. Later in the paper, we

shall show that the matrix (~ ~), which appears in the problem

(b,c,D) , belongs to C if and only if D is a Minkowski matrix.

In many potential applications of problem (1.1) to obtain

numerical solutions of partial differential equations in their dis-

cretized form, the matrix D is very large, sparse and structured, in

addition to being of class Z. See [6] . Special (iterative) methods

under various additional &ssumptions on the matrix D have been proposed

• 1 and implemented [1], [6], [13], [17], [21 J . Direct methods like the

principal pivoting scheme [1k] and Lemke ’s almost coniplementarity pivot-

ing scheme [5] do not appear attractive in this instance because, for

one thing, they do not take advantage of the special structure that

D possesses, thus creating storage difficulties when handling large—

¶

c scale problems . Cheng [3] and Veinott [23] have described special (direct)

methods for solving the salary administration problem and the taut

string problem respectively. Unfortunately, their methods are not

applicable to the general problem.

Our purposes in this paper are: (i) to establish two least-

element aspects of the linear coinpiementarity problem (b,c,D);

3

~~~~ ~~~ . •
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(ii) to present a new (direct ) method for solving large-scale linear

• complementarity problems of this class; and (iii) to report our

computational experience in solving some realizations of this class

of problems using this new method. The plan of the paper is as follows. LI

* 
In the next section, we review some basic terminology, fix our notations

and present a result in lattice theory that will be used in later

development . In Section 3, we develop the least-element aspects of

the problem. In Section ~i , we present our proposed method and discuss

some of its ref inements when it is applied to problems having further

structure. In the fifth and final section of this paper, we report

our computat ional experience with the method

-~~

.4,

.1~
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2. NOTATIONS, D~~INITIONS AN]) BA$IC ~~SULTS

1 1 
We denote by R~ the nonnegative orthant of Euclidean n—space.

By Rf lX m, we denote the space of’ real n x m  matrices. We use I~ to

denote the identity matrix of order n and e~ to denote the sui~~~tion

vector (1,~~•• , 1) T C R1
~. The real matrix A C Rf lX~ is said to be a

Z-matrix (P-matrix) if it has nonpositive off-diagonal entries (positive

principal minors). We shall call a matrix A C X ~ a K-matrix (or a

Minkowski matrix) if it is both a Z- and a P-matrix simultaneously.

The classes of all real Z-, P- and K-matrices will be denoted by Z,

• P and K respectively. It is obvious that principal submatrices of

Z-, P- and K-matrices are themselves Z-, P- and K-matrices respectively.

J i Proofs of the following characterizations of P- and K-matrices can be

I found in Fiedler and Pt~k [11].

v~ t :
Proposition 2.1. (1) A matrix N is a P-matrix if and only if to

• every vector x ~ 0, there exists an index k such that x
~
(Mx )k>O.

• (ii) Let M C Z. Then M € K if and only if there exists a vector

I x > O
L .  —

• 
( For a vector q C and a matrix N C RflXn, the linear corn-

plementarity problem, (q, M) is that of finding x C R~ such that

~~~

- q + M x > O  and xT(q+~ tc )= o .

- Note that the problem (b,c,D) is precisely the linear complementarity
- 

problem (q, M) with q = (
~

) and M = (~~ ~) . The problem (q, M)

L
- 

~~T .  - 
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~
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f
is said to be feasible if there exists a vector x C R~ such that

q + Mx > 0. Any such vector is said to be feasible. The set of feasible1 vectors is called the feasible set. It has been shown (see Samelson

;
~~~~~~~ et al. [20)) that (q, M) has a uni que solution for every q C R~ if

and only if N € P.

• Let M C R~ 
X n and i, j  c { 1,. . . , n). We define 

*
4 

t
t •

~~~~ ...
M13 =

~~~~~

where I = (i1, .. , t~) and J = [j 1, j~) with

1<i1
<...< 15 <n and l<j1 < ..-<j <n. In particular,

is a principal submatrix of M. Similarly, for a vector q C

we define q1 = (q
1 , ... , q~ ) T
1 5

• For the sake of completeness, we briefly review a few concepts

in lattice theory and state a theorem which is essential in the least

element study of the problem under consideration. The following dis-

- 
cussion and a proof of the theorem can be found in Veinott [2 14] and

Pang (16) .

-
~~~ A subset S of Rn is called a meet semi-sublattice (of t) j

if for every x, y C 8, the vector z min(x,y) defined by

z~ = min(x~,y1) for each i, also belongs to S. The subset S is

bounded below if there exists a vector x C R’~ such that x > x ’

6
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for every x C S. An element i C S is a least element of S if

I x > i for every x C 8. It Is clear that a least element, if it

I ’ exists, must be unique.

~

J 

Theorem 2.2. Let S be a nonempty and closed meet semi—sublattice

- of Rn . Suppose that S is also bounded below. Then S has a least

• 

element.

-i H

~ •

i 
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3. CONNECT IONS WITH LEAST EL~~ENTS -
~

• Throughout this paper, we assume D C Z and b > 0. It has

been proved that the linear complementarity problem with a Z-matrix

~~~ has a solution which is the least element of the feasible set , provided - ‘

that the latter is nonempty. In fact, this assertion follc~’~s immediately

from Theorem 2.2 by noting that the feasible set Is a meet semi-sub-

lattice of B’1 satisfying the conditions in the theorem. It is then

not difficult to verify that the least element solves the linear corn-

plemenitarity problem. We note that even though D C Z, the matrix
I’ 

(_~~ ~) which appears in the problem (b,c,D) does not belong to Z.

Therefore the above assertion does not apply. Furthermore, the feasible

set of the problem, which is defined as the set
‘I

[(X)€ R 2 x R ~~: x< b  and c + D x + y > O )

might not itself be a meet semi-sublattice of R2
~ , as easily con-

structed examples will show. Therefore, Theorem 2.2 cannot be applied

to the above set. In this section, we develop two least element aspects

of the problem. Both of them will show that the problem possesses a

solution which can be obtained from the least element of subsets of

Euclidean spaces, one of which is in R~ (the x-space) while the other

in R÷ X R.~ (the space of the feasible set).

• We start our least element study of the problem by observing

that, even without the assumpti~n D € Z, a vector x C R~ satisfying

x <b clearly determines a (unique) vector y C B’1 such that (x,y)

8
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solves the problem provided the conditions below are satisfied for

each i = l ,..., n:

(I) Xj  = 0 4-Cc + Dx) 1 ~ 0

(ii) b1 > x 1>o~~~(c + tx). = 0

J (iii) x1 = bi ~~(c + Dx)~ < 0

With an abuse of language, we also say that a vector x C R~
’1 satisfying

x < b and conditions (i)-(iii) is a solution with the understanding

that the y vector exists such that (x,y) is a. real solution.

We now describe a meet semi-sublattice of R’1 having a least

• element which solves the problem. In the next section, we will present

J an algorithm which actually computes this least element.

Theorem 3.1. Let D C Z and

1~
Then S is a meet semi-sublattice of R’1 and has a least element.

Moreover, this least element is a solution for the problem (b,c,D).

- 
Proof: Since intersections of meet semi-sublattices are meet semi-

- - sublattices, it suffices to show that each set

= (x € R~:x < b; x~ <b~ ~ (c + Thc) ~ > 0)

is one such for i = l,...,n. Let x, x ’ C S~ and x” = min(x,x’).

Clearly, 0 < x ” <b. Suppose x~ < b~ and say, x’j  = x1. Then

9

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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(c + Thc”) = + d x~ + ~ d xtt
I iii 

~~~~ 
i i i

>e + d  x + ~~ d . x . > 0 .
-
~~~~ 

— i i i i  ;j~ i i J 3

J Thus x’t C S~. Therefore, S is indeed a meet seini-sublattice of Rn.

It is clearly closed and bounded below by 0: it is nonempty because

b C S. Hence by Theorem 2.2, it has a least element, say ~~ . It

• - remains to verify that conditions (ii) and (iii) are satisfied for ~~ .

We omit these proofs because they are similar to the one given in

Lemma 3.10 in Cottle and Pang [7) .  0

Theorem 3.1 above shows that when D € Z, the problem (b,c,D)

has a solution . The next proposition is concerned with the uniqueness

of the solution.

Proposition 3.2. Suppose D C K. Then the problem (b,c,D) has a

unique solution ~~~~~ 
where i is the least element of S -

Proof: It suffices to establish the uniqueness part. Let (5E ,~ ) be

• another solution. Then for i = l,...,n, we have

-

( i _
~~

)
~

(
~
i _ u ) 1 = (~~

_
~~ )~ [D ( i _ ~~ ) + (~~~-~~~fl~ -~~~

= (~ - ~~~ 
(~

(
~ - ~ ) ) ~ + (

~ 
- - 

~)i

Furthermore,

10
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Thus (i - ~)1(D(~ - ~~~ < 0 for each i. Hence it follows from

Proposition 2.1 that ,~ = x. Clearly, ~7 = ~~. This completes the proof.

0

— - • Corollary 3.3. Suppose D € K. Let i and 5E be the (unique)

solutions of the problems (b,c,D) and (c,D) respectively. Then x x .
- - 1q

Proof: Let x = mIn(i~,b).  Then x C 5, for clearly 0 < x  < b.

) 
If xi <b i, then x~ = so that

(c + Dx) 1 = C
1 

+ d.ixj + E d.1x.

- 

> c  + d .i + E d  ~ >- o.
— i i•i i i l l—

- 
Thus x C S and since is the least element of S, it follows

that ~ < x <i .  This establishes the corollary. 0

~~~~
1
1

- 
~
- 

I The results above show that the problem (b,c,D) has a solution

I which can be obtained f rom the least element of a meet semi-sublattice

of ~~ In the rest of this section, we study another least-element

- • 
aspect of the problem. We recall that the feasible set lies in R~

i i  11

I.

_____ -- 
~~~~~~~~~~~ -~~~~~ - - ___________
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S.

Therefore, the meet semi-sublattice S and the feasible set belong to

two different spaces. Here, our objective is to establish that the

feasible set itself contains “ some” least element, i.e. a least element

J 
under a different partial ordering, that solves the problem. To achieve

- - this, we prove the theorem below.

Theorem 3.~ . Let D C Z. Then D C K if and only if (~~ ~~ C -

) Proof, Necessity. If

x = ( ~ D )  
and Y= ( ~

) 11

then clearly MX = Y. It is obvious that X € K and Y C K. Thus

M E C .

Sufficiency. Suppose M (~~~ ~~
) C C - Then there exist

Z-inatrices X, Y and nonnegative vectors r, s such that MX = Y

and rT~ + 5T~ > 0. We may write

xll 
_x
l2 

.)
•

—x21 x22

where X11, X22 -~ Z and X~~, X21 are nonnegative. Then, we have

(D I )  (x
ll

_x
12)

-I 0 -X21 X
22

- 

DX11 
- X21 -DX~~ + X22

12 .1 ,

‘ I  _
: ‘ — - _ _
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Since Y is a Z-matrix, it follows that and X.~~ are nonnegative

diagonal matrices. We may write rT = (z~, r~) and = (sf, s~ ) . By

• an easy calculation, we obtain

r~~~+ ~Ty = (r~,r~ ) ( x u ~x12) + (
~~~~~~) ( 1  

~~~12 
+ K
22)

1 
-x21 x22 

_x
ll K12

~~~~~~~~~~~~~~~

t .

• T T T T
= (r1X11 - r2X21 + s1DX11 - 

~l~2l 
- s2X11,

- 

- 
- r~X12 + r~X22 

- s~DX12 + s~X22 + s~X12) .

j  - Thus, we have

~~~~~

(3.1) r~X11 
- r~~21 + 4DX11 - 

~~ 2l 
- 

~~~~ 
> 0

- •* 
H

.

(3.2) -r~X12 
+ r~X22 - + s~X22 + s~X12 > 0

Expression (3.1) implies

(r~ + s~D - s~ )X11 > ~~~~ + ~~~~ > 0

Thus,
T T Tr1 +s 1D - s 2 >0 .

Expression (3.2) implies

(r~ + a~ )X22 > (r~ + 4D - s~ )X12 > 0

13

- -H 
_
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Since X
22 

C Z, Proposition 2.1(11) implies X22 -~~ K. The fact that

Y C Z implies DX12 > X22. Since D C Z and is a nonnegative

diagonal matrix, it follows that C Z. Proposition 2.1(11) then t
implies DX12 

C K and thus D C K. This completes the proof. 0

The hypothesis D C Z is necessary in order for the sufficiency

part of the Theorem 3.4 to be true. In the following we give an example

- • 
of a matrix D such that D ~ Z but (

~~~ ~~
) C C

Ex~~~le: Let D = (~~ ~ ). Obviously D ~ Z. Let M = (_~ ~ ).

Choose

Then it is trivial to verify MX = Y. Clearly X, Y € Z. If

rT = (4,2,3,1), and 5T = 0, then rT~ + 5T~ > 0. Therefore M € C

- • 
Using a result (Theorem 3.11) established In [7), we deduce

7 that when D C K, the (unique) solution of the problem (b,c,D) is

given by the vector

= f~ 
..
~) (~} = f u ;:~

where (ii
) 

is the least element of the polyhedral set

14

~
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((
~

) C R’1 x R~ : c + Thi > 0 , b - u + v >0, u - v >0, Dv > 0)

t I

Furthern~ re, it was shown in the same reference that the solution
X can be obtained by solving the linea r program of finding vectors

- y I
x, y C R ~ which

-~ 

- 
(3.3) min~m1ze T

~ + qTy

subject to c +

where p and q are vectors satisfying

p 
— 

r

0 D q s

:~ - for some ( )  > 0. It is then clear that such vectors p, q can be

L obtained by first setting p r and then solving DTq p + s for q.

I The discussion above shows that when D € K, it is possible to

solve the linear compleinentarity problem (b,c,D) via the linear program

(3.3). The latter can be solved by the Simplex Method (with the upper

j  [~
, bounding technique) or the iterative (relaxation) methods for systems

of linear inequalities. On the one hand, the Simplex Method being

- • very general, encounters storage difficulties with large scale problems

of this nature. On the other hand, our computational experience with

• 

- 
one part icular iterative method is quite discouraging, even for problems

of very small size (see [7]) .  Although further analysis and clever

1~ 
15

- • •
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modification might bring about improvements in the computational

performance of these methods , but we believe that another approach is

preferable for solving the problem (b ,c,D ) .  In the next section, we

propose a new and efficient algorithm for solving large-scale linear - .

complementarity problems of this class. It Is a direct method which

exploits the structure of the problem.

I

I

u i I -
~

16
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4. A FAST ALGORITHM FOR IA1~JE-SCALE PROBLEMS

-
~~ Methods for solving the linear complementarity problem (b, c, D)

under various assumptions (e.g. symmetry and positive definiteness)

d 

- 

on the matrix D have been proposed and implemented. See [6 ]  for a

~~~~~ 

.. survey. These include both iterative procedures [ii ,  [13], 1 17], [21)

fbr the general problem and direct methods for some of Its particular

cases [3], [23). Typically, in applications of this class of problems

-
- to partial differential equations, the matrices D are very large and

- 
sparse. The kinds of direct (pivoting) methods that are normally used

to solve linear complementarity problems are undesirable because they

do not take advantage of the special and sparse structure of the

• matrices, thus causing storage difficulties when handling large-scale

I problems. These features (special structure and sparsity) are very

Important factors motivating the design of a special efficient algorithm.

Our purpose, in this section is to present a new (direct) algorithm

for large-scale linear complementarity problems of this nature. In

the first part of the section, we formulate the algorithm in its general

form. In the latter part of the section, we refine the algorithm to

solve the subclass of problems having tridiagonal matrices D and a

class of variance-minimization problems.

Because of the similarity of our algorithm and Chandrasekaran’ a

algorithm [2] for linear complementarity problems with Z-matrices, we

begin by reviewing the statement of the latter algorithm. It can be

shown that the solution obtained by this algorithm is the least element

of the feasible set (233.

17
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Algorithm I: Chandrasekaran ’ s Algorithm for (q,M) with M C Z.

Step 0. Let k = 0 and = 0. 
-

4 Step 1. Let 1(k) = (i:(q + ~~(k)) < 0) and ~~(k) 
= [1,..., n)\I~~~. If

1(k) = 0 stop . A solution is ~~~~ Otherwise continue.

Step 2. Let I = 1(k) and ~ ~(k) Solve ~~~~(k+1) = -q1. If

this system of equations does not possess a solution, stop.

The problem (q,M) is infeasible. Otherwise set ~~
1
~
1) J -

Replace k by k+l and go to Step 1.

• I

) In what follows, we propose a slight modification of the above

algorithm for the case 14 C K.

Algorithm II: Modified Chandrasekaran Algorithm for ~q, M) with M C K.

Step 0. Let k = 0 and x (0) o. 
- 

-

Step 1. If (q + ~~ (k) ) > 0, ‘ stop. The solution is x~~~. Otherwise, -

let 1(k) = (i:(q + ~~~k) ) < 0 )  and ~(k) 
= (l,...,n)\I~~~.

Continue .

-

. Ste.p 2. Let i = 1(k), and j  ~~~ Solve ~~~~~~~ = - q1 and set

= 0. Replace k by k+l and go to Step 1.

The two algorithms differ in the definition of the set i(1~?.

• In the former, the set ~
(1

~ is defined as [i :( q  ÷ Mx(1
~ )j <0) 1

which, in general is more restrictive than the one defined in the latter.

- — 
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In order to explain the motivation for our modification, we recall that

~~~~ j  
an essential purpose of Chandrasekaran ’ a algorithm is to identify the

set ~~~ of all those indices I for which (q + M~) 1 = 0 where j

is a solution (provided that it exists) to the problem. This purpose

is achieved by using Chandrasekaran’s observation (q + !.lx

which, together with the complementarity condition, implies (q + =0.
(k)

• 
Thus the sequence of sets I forms a successive approximation to

the desired set ~~~~~~~~~ Recognizing this fact, we see that the algorithm

may be improved if the sets ~~~ can be made to “converge” faster
(+)to I , or in other words, if fewer systems of equations have to be

solved in Step 2. We therefore propose to modify the algorithm slightly

by observing that this stronger implication holds, namely,

(q + Mx~~~)~ <0 =~ (q + M~) 1 = 0, and redefine the set 1(k) as in

the second algorithm. Note that the Implication (q + ~~~~~~ ~~~~~~~~
!: does not necessarily hold. The new definition of is intended to

include as many indices in ~~~ as possible. It has the potential

advantage of aggregating several systems of equations into a single

one, therefore reducing the number of systems to be solved and thus

L. speeding up the termination of the algorithm. We believe that in this

way, the overall efficiency of the algorithm will be increased. ]
The reason we -propose the modified version of the algorithm only

for the case M belonging to K is in solving the systems of

equations ~~14k+1 ) 
= -q1 in Step 2. With M C Z and the old —

definition of the set 1(k) , it can easily be proved that the submatrix

• TMfl is Minkowski, provided that the -problem (q, M) is feasible; in

19
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I
• (k+l)this case, the system of equations M11x1 = -q

1 
can be solved

very efficiently by both factorization and iterative methods ; further-

more, the solution to the system of equations is bound to be nonnegative.

On the other hand, with M simply belonging to Z and our new definition

of the set i(1
~~, there is no guarantee that the submatrix M~~ Is non-

• singular, as an easy example will show, thus the system M1f41~ 1) = _ q
1

may have multiple solutions. Although one can then solve the system:

1~~~4k+l) 
= -q , ~

(k+l) > 0, but it is not hard to see that so doing

will essentially bring one back to the original Algorithm I. Thus

nothing much is gained. However if M C K, then each system

M~~
4k+l) -q1 is guaranteed to have a (unique) nonnegative solution

even with the new definition of ~~~~ Combining the above facts and

the advantage (dIscussed in the last paragraph) of the new definition

of i(1
~~, we conclude that the modified algorithm II is best suited

for linear complementarity problems with Mlnkowski matrices. We do

not recommend it for problems (q,M) where M C Z but M ~~
‘ K.

We are now ready to state and justify our proposed algorithm

for solving the problem (b, C, D) with D C Z and b > 0. The algorithm

is a finite scheme which requires solving a sequence of nested sub-
-
, 

problems of increasing sizes. It starts with an initialization step

which determines the first subproblem to be solved. An inner cycle

is then reached where the subproblem is actually processed. The solution

- 
- 

obtained there is then tested. The procedure either terminates or

-

• 
enters the outer cycle where a new subproblem (of larger size ) is

determined. The teat for solution is repeated and the outer cycle is

20
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again reached or else the procedure terminates. Eventually, the

-, algorithm stops in a finite number of steps with a solution to the

- 
problem.

• The Algorithm:
L 

Step 0 (Initialization). If > 0 for every I, stop. A solution

- is given by ~ = 0. Otherwise, let t = 0, 1(t) = [i: c1 < 0)

- 
and J(t) = (l,...,n)\I(t).

- ) Step 1 (Inner cycle). Let I = 1(t) and solve the linear complementarity

problem P ( t ) :

~
g

t’ 
~~. 

- c 1 + D
11b1

) ÷ > 0

- (1~.l ) v1 > O

- 

v~f-(c1 + D11b1) + D11v1] = 0

Let VI(t) be the least element solution. (See Remark 2 below.)

Step 2 (Outer cycle). If C
1 

÷ Ej€I (t) d1~ (b~ - 
~j

) > 0 for every

I C j(t), stop. A solution is given by XI(t)  = bI(t) - VI(t)

and X
J (t )  

= 0. Otherwise, let

• 11(t) = (i € J ( t ) :c1 + E d
i ~~ ~

j€i(t) ~ ~ 
—

1. Set I(t+l) = 1(t) Uii(t), J(t+i) = (l,...,n) \i(t+i); replace

- t by t+l and go to Step 1.

21
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Remark 1. This algorithm produces a solution In solving at most n

subproblems of the form (~ .i) .  •

Remark 2. Each subproblem p (t) is itself a linear complementarity I
_

J 

problem with a Z-matrix, thus the least element solution V
I(t) exists

• 
if P(t) is feasible (to be established soon) and ‘

~~(t)  can be

obtained, for example, by Chandrasekaran’s algorithm mentIoned earlier.

Remark 3. If c < 0 in the original problem, then the algorithm

reduces to solving the single linear complementarity problem (-(c+Db),D)

with the Z-matrlx D, which of course can be solved very efficiently,

for example, by Chandrasekaran ’ s algorithm .

Remark 4. The algorithm is similar to Chandrasekaran ’ s algorithm in

that they both require solving subproblems of increasing sizes and checking
- ! CQr termination . The algorithms differ In the subproblerns. In our ni

algorithm, the subproblems are linear complementarity problems with

Z-rnatrices, whereas in Chandrasekaran ’ s algori thm, the subproblems are

systems of linear equations . In a forthcoming report . we will generalize

the problem (b ,c,D~ to allow some or all of the bk ’ s to be infinity.

This generalization obviously includes the present problem and a linear

4- 
complementarlty pr lem with a Z-matrix as particular cases. We will

also propose an efficient algorithm for this generalized problem and 
-
•

show that it unifies the algorithm abr~ive and Chandrasekaran ’s L .

algorithm.

Remark 5. In the forthcoming report, we will demonstrate that the

solution generated ~~ the algorithm is precisely the least-element H

of the meet semi-sublattice ~ introduced in the last section.

22
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The success of the algorithm relies on the fact that we can

eliminate the upper bounding conditions explicitly and produce certain

linear complementarity problems with nice matrices which can be pro-

cessed very efficiently by existing methods. In order to guarantee

that the solutions thus generated satisfy the upper bounding conditions,

• we require that ~~~~ 
be the least-element of the feasible sets. Here,

we see how the idea of least-element solution plays an important role

in the algorithm.

In order to establish the validity of the algorithm, it suffices

to verify two things, namely, that each subproblem P(t) is feasible

and that the least element solution 
~i(t) 

satisfies the condItion:

~ 
b1~~ for every cycle t. We proceed by induction on t.

) Problem P(o) is obviously feasible: V1(0) = b1(0) is a feasible

vector. Thus V is well-defined and it follows from the minimality

property that 111(0) <b1(0). Suppose P(t) is feasible and

~ 
bI(t). We show that ~ r(t)’ 

bll(t)) is feasible for P(t+l).

It suffices to verify

- 

CI ( t)  
+ ( ~~~~~~~ DI(t)Il(t) 

(b
I(t)

C I1(t) DI1(t)I(t) DI1(t)Il(t) bll(t)

4- 
+ 

(

DI(t)I(t) DI(t)Il(t) ) (V ~~
(
~~~

) 

~~~~~
DI1(t)I(t) DI1(t)Il(t) bll(t)

But this is clear from the definitions of 
~I~t) 

and of index set

11(t). Thus problem P(t+l) is :easible. FLialIy, vI(t÷l) ~~
bI(t+l)~

— I

~
.

•—_
•
•-.
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because 
~ 

is the least element of the feasible set of P(t+i).
‘¼ 

~

This completes the inductive step and the algorithm is therefore

justified.

J 

Monotonicity of the Iterates: The proof above shows that the following

inequality is valid:

- 

VI (t )
- 

vI(t÷l) ~ bIl(t)

with the understanding that the vector -
~~ , 

+ 
~, is partitioned in

Ik t l )

-
~~~ accordance with the vector on the right side. This inequality implies

( 

that if some variable attains the value 0 at some iteration step t,

.3 then it remains at the value 0 in the final solution, thus can be dropped

from further consideration. The subsequent subproblems will then have

smaller sizes, thus can be solved more quickly.

In order to complete a further analysis of the algorithm, we

study some of its refinements when it is applied to solve some particular

subclasses of problems. We first consider the case where the matrix D
L

is tridiagonal ani Minkowski (i.e. d.~ = 0 if i-~ > 1). Realizations -~~~

- - of this subclass of problems can be found in Veinott’ s taut string
- 

problem [23] and in a discretized version of the unilateral Dirichlet LI-
problem with two obstacles [21] . In fact , the matrix D appearing in 

13

the latter case has a block tridiagonal structure . This means that the

matrix D can be partitioned int o blocks ~~ (i, j = 1,...,n~ where

-• 
D1. 0 for ~i-j~ > 1. However, the diagonal blocks are tridiagonal. 

- 

-

2~
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Recognizing the storage problems and difficulties encountered in solving

- , ~ 
- 

large scale linear complementarity problems with block tridiagonal

Minkowski matrices by direct application of the algorithm, Cottle and

Goheen [ 6]  recently proposed a hybrid algorithm to solve this class of

I 

problems which requires solving subproblems of the form (. ,.,Dij ) .

The algorithm proposed above may be applied in this instance. An investi-

- gation of this solution strategy is reported in [ 6 ] .

Since we now assume that D is a Minkowski matrix, the subproblems

have unique solutions which must necessarily be the least elements of the

- feasible sets of the respective subproblems. These (unique) solutions

can be obtained by a number of efficient algorithms. We r’fer to

) Sacher [18] for some very detailed comparisons of various methods to) solve the class of linear complementarity problems with tridiagonal

Minkowski matrices. It was observed in the same reference that each

principal submatrix of the matrix D is composed of s > 1

block diagonal subniatrlces (each of which is tridiagonal and Minkowski)

with zeroes elsewhere. Thus each subproblem P(t) is again decomposed

into s subproblems each of which is a linear coniplementarity problem

with a tridiagonal Minkowski matrix and can be solved independently of

- 

4

i the others. This decomposition of the subproblems is put to advantage
— 

in our adaptation of the algorithm which is formulated in flow chart

t~rm bel~w.

25
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i ~-o
i=l

if ( Ii > fl?~~~~ 
)

j  )r -_j YES -
~~

(III )

~L2=i2+]4 il(i) ? YES 
~_-Ix(i1=0I

NO 

3olve the problem 

I

Qhere

I= -(i3+1,...,i3+i2) 
- 

-

Set i =b -~~~ wher~
is the least L

element solution 
I

• 3=1
2=0

=1+

• NØ 1>n?

YES

2~
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a

~~~ (Iv ) 
old:j

iJ 
I 

il(i)= 1? 
NO 

(c+Di)1)0? 
>
~il (i)= 1 1

YES YES

-1 ‘ -• ________

I 

=1+

NO I > n?
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Notations in the Flow Chart.

- 
i~ = size of each subproblem P(t);

ii = index set identifying the indices included in 1(t); [
- 

ii(i) = 1 means i € 1(t) and 0 otherwise;

12 = size of each decoupled subproblem of P(t);

13 = index identifying the last component of the current

vector x that has been determined ;

b i d  = index used to determine the current vector x for

solution.

Coi
~
ents on the Flow Chart.

J It is composed essentially of four loops (i)-(iv) . Loop (I) is

an initialization of the indices and is self-explanatory. Loop (II)

consists of two subloops (III) and (iv) . it corresponds to an outer

cycle of the method where the subproblems to be solved are determined.

Each subproblem p(t) is solved in Loop (III) and the current vector

is checked for solution in Loop (iv) .

Storage Considerations.

-
~ 

The original data b, c, D are stored in (5n-2) double precision

numbers, each of which requires 8 bytes. The integer indices are stored

as Il -byt e numbers. An additional n double precision numbers are

required for the solution vector x. Therefore the total requirements,

excluding those for the subproblems, are approximately

( 5n-2) x 8 + n x i~ + n x 8 ‘ 52n bytes of storage. Depending on

the method used to solve the subproblems, extra storage space may range

28
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from 0 to 17n bytes . See [18] for more accurate estimates of storage

requirements for the subproblems.

- 
We next proceed to another application of the proposed algorithm

- and solve a quadratic program studied by Cheng [3] in a model of salary

-~~~~~~~~ 1 administration. The problem is to find a vector y € R~ to
1•_

-: 
- I! (~.2) minimize n E ( A ~ + B

1
y
1

) 2 - ( E ( A
1 

+ B
1
y
1

) ) 2

L subject to a
1 ~ Yj  ~ ~~

, i =

In the particular application in which the program appeared, the variables

re-present employee i’s compensation, while parameters A
1 and B1

- 
are respectively measures of his rewards and performance. All the

constants are positive. Making the substitutions, z = A + B y ,

Z~ = A
1 

+ B
1

cr1, and Z~ A
1 

+ B
1~1 

we may write problem (4.2) as

[ (14 .2 ) ’  minimize n ~ - ( E z ) 2
- 1=1 1=1

0 1- 

~~
-. subject to < < Z1, j =

- - 

which can be rewritten in vector notations as

• 1-’
- 

(4.3) minimize zTDz subject to Z° < z <

- ~.

• 29
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L.

• where D = nI - e eT € Z is symmetric, positive semi-definite

z = (z
1

), Z0 (Z~ ) and Z1 = (z~). Therefore the Kuhn-Tucker conditions [
which are precisely the problem (b ,c,D) with b - and r

_

~~~~~~~~ c = ~~O, are necessary and sufficIent for global optiinality . Note that

it i solves (b ,c,D),  then ~ + Z0 solves (14.3).

In the sequel, we apply the proposed algorithm to solve problem

(14.3) by solving the equivalent problem (b ,c,D) .  Al though D is -
~

singular (thus D ~~
‘ K), each of its proper principal subinatrix is 1

Minkowski, in fact , every such submatrix of order k < n has the form

T - -d

Dk =n l k
_ e

kek

and it can be shown by an easy calculation that

- I ~~ 
(1k + 

~~~ ek~~
) if k < n .

A typical subproblem in the proposed algorithm for the problem (b ,c,D)

is to solve the linear complementarity problem

- (c1 + D11b
1

) + D11v1 0

( 14.14) v1 > O

v~{-(c 1 + D11b
1

) + D11v1) = 0

- 

- 
where I c (l,...,n) .  Due to the “ simplicity” of the matrix D and

30
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- - the tact that each of it~ proper principal submatrix is Minkowaki, we

L choose the modified Chandrasekaran algorithm (Algorithm II) to solve

(4 .4). By an easy calculation, we deduce that
- 

I

- 
- .  c = t Z 0 = n Z 0 _ ( ~~ Z~ )e

and 
1=1

I
-

~~~~~ 

= - ~~~~~ Z~)e 1 11+n(Z~ - Z~~) - E (Z~ - Z~ )e 111

U = n 4 - (~ Z~~+ ~ Z~ )e~~
- - 

1€I
I

’

where I I I  denotes the cardinality of the set I.

*
- It is then necessary to solve the system of linear equations

( 14.5) D1111v11 =

where Ii is the subset of I which consists of tl~~se indices i € I -•

- for which f1 < 0.

- 

*Let Ii C I, we denote by f11 the vector - ( €~ ~ +Ei~~ Z~ )e I I i i •
Note that f1 = c1 + D 1b1 which is not equal to c + D b . This

1 1 1 I~ I~~I]~~I]~
abuse of notation will occur again in later development.

31
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Case 1. (Ii i n. Then (14.5) becomes the whole system

D v= f  where f = c + D b .4 -

~

‘ 

In this case, a solution vector to the problem (b,c,D) is given by any

solution to

- D x + c = O , O < x < b

(~ .6) D ( x + Z °) 0, O < x < Z 1 - Z ° .

Since the matrix D has rank n-l and De~ 0, it follows that such

I a vector has a representation

c 

( 14. 7) x = ~~e~~_ Z ° where Z~~<~~~< Z ~, i = l , . . . ,n.

Therefore, a solution of the problem (14.3) is given z = ?~e and the

problem is thus solved.

Case 2. J I lJ  < n. In this case, problem (1~.5) has a unique solution:

v =D fIi 11,11 Il

= + e 
~~ 

e
I~ iI] [z~ 

- I 
~~~~ 

+ ~ Z~) e }
- Thus,

32
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~ (4.8) V11 
= - 

i€J1 
:~ _ i ~~~~ 

ej~ 11 
where 31 = i\~i.

- 
- ~~~~ By an easy calculation, we obtain

-

~~~~~~~~ ~ 
E z1 + E z°

- 

(4 .9) _ f
,~~~ + D31 11v11 = -n Lz,~ 

- 
- e1311

— 5

- We then look for non-positive component s in the above vector and augment

L the index set Ii. This latter step is repeated until we arrive at some

- index set Ii C I such that either 111 1 = n, in which case we havef - .  
obtained a solution to (14.3) and the algorithm stops, or we obtain a

- (1 solution to problem (4.14) given by (v11,0) where v11 is defined

by (4.8). In the latter case, a tentative solution vector to the

problem (b,c,D) is

E z1 + E
- 0 i€Jl i€J

- 

(4.10) x11 = -Z11 + n - ~I1~ e1111

- 

x~~ = b31 and x~). = 0

where
- 3 = (l ,...,n) ’\..,I .

- Again, by an easy calculation, we may deduce

- 
I E z 0 + ~ zi
I 0 i€J• i€Jl

+ D~~x1 = n - 
- ~ ]j 

e 131
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The current vector x is then checked for solution by identifying any

non-positive component in the vector above . The algorithm either stops

or continues with an augmented index set I.

Summarizing the above analysis, we formulate a orocedure for

~~~ solving problem (14.3) .  
1

1. Read in ri , Z0 and z1 (N = (1,...,n)). -

Set Iter(# of inner loops) = 1 and Aver 0 
~~~~~~ 

z?.

2. Determine the set 10 = {i € N:Z~ < Aver 0) and 1101 .

Let Aver 1 = ~ ~~~~ 
Z~ + Z0.) and JO N\I0.

3. Determine the set I]. = [i € I0:Z~ > Aver 1) and Il~. Let

3]. = I0’\El. ~1
4. If 111 1 = n, find a scalar l~, satisfying - -

(14.11) Z. < ?‘~ < Z. for 1 1,. ..,n . —

In this case, a solution i~ given by z =

5. If lIl t < n, let Aver 2 (n- I I l I )~~ ~~~~~ + 

~i€Jl 
Z~ ).

Determine 12 = (j C Jl:Z~ > Aver 211 . 
-

-

6. If 12 ~ ~ , replace Ii by Ii U 12 and go to 4.

7. If I2 = 9
5-’
, set 13 = (j € J0~Z~ < Aver 2).

1;

34
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8. If IS ~ 9’, replace 10 by 10 U 13. Update Aver 1, and replace Iter

by Iter + 1. Then go to 3.
5-- -.

9. If 13 = 9’, a solution is given by

z,~ = Z~0, z31 = and z
11 = Aver 2 e,11,

Remark 1. The procedure shows that two cases can occur, namely,
- 

(1) a scalar 7~ satisfying condition (4.11) can be found in which case,

the vector having all components equal to A is a solution of problem

- 
(Ii .~}, and (ii) there exist index sets S (= Jo) and T (= 31) such

. • that the vector z = (z~) where z~, = for I C S, z~ = Z~ for

- i € T and Z
i 

= (1st + I T l Y ~~ ~~~ Z~ + 

~~~~ 
Z~) for

i€ N\(S UT) solves (14.3).

Remark 2. The algorithm Cheng proposed in (.3] for solving the quadratic

program (4.3) is essentially a sorting procedure to identify the sets

S and T if they exist. A computational comparison of the two

algorithms will be reported elsewhere.

- I
L
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5. COMPUTATIONAL EXPERIENCE -,

This section is a report on our computational experience on

solving some linear complementarity problems of the nature studied J

J 
above. Two sets of experiments were performed; the first of which was

on problems (b,c,D) with tridlagonal Mink- w~ici matrices
* D, whereas

the second was on the quadratic prog~a~’ ~)—.2) studied by Cheng. An

essential purpose of these experiments was to test the capability and

efficiency of the proposed algorithm in handling large and -practical

- 

- 
problems. Specifically we wanted to investigate the number of sub-

-
~~ problems that needed to be solved, how their sizes grew at each

iteration, and the total execution times. In all the experiments

described below, the modified Chandrasekaran algorithm (Algorithm II)

was used for the sub,problems.

When complementarity problems of this kind are solved, there is

always the possibility of fixing some variables at their bounds a priori

in order to reduce the dimensionality of the problems. This can be

achieved via the following implications which can easily be verified:

* H
(i) c1 + d11b~ < 0 =

~ 
X
i 

= b .

*
— ( i i )  c + ~~d .b. > O = ~-x = 0

i ./. i3 J~~
_ i

*where x is an optimal vector. We believe that this pre-processirig

procedure will increase the efficiency of the algorithm. See [6] . How-

ever, in the experiments performed below, this fixing variables at their

bounds is not adopted.
5- *
~~ Applications and computational results of the proposed algorithm to solve - 

-

problems having block tridiagonal Minkowksi matrices are reported In Cottle
and Goheen [6] .
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The flow chart of Section 4 was coded in a FORTRAN subroutine

to solve problems (b,c,D) where

d -e

-e d -e

€RnXnL X K.

-e

The computation was done using FORTRAN H with Opt 2 and double

precision arithmetic (8-bytes) to avoid round-off errors . The results

of the first set of experiments are summarized in Table 1. The vectors

b and c were generated according to the rule

ci = -f + and b1 = h
~~i

where f , g, h are positive scalars, ~~ and ~ ‘, are randomly - -
generated numbers in (0,1). The following notations are used in the

4.. tables 

-
= (i:c~~<O)

12 = {i:x1 = 0) and 1* = (i:x~ = b . )

1.
*where x is the solution generated. The si’es of the subproblems

~~~ are listed in the fourth column. The size of the f irst  subproblem is

always the same as ~~~ and therefore is not listed.
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The proposed algorithm has a potential weakness in handling

problems where it is necessary to solve many subproblems with slowly

increasing size. The last experiment indicates that this situation

: - might really occur . Nevertheless, the execution (cpu) times in the

encouraging. Further experiments of the algorithm will be performed

- 

) 

table show that the overall performance of the algorithms is very

• and reported elsewhere.

The second set of experiments is concerned with the solution of

Cheng ’s quad ratic program (4.2) by the procedure described at the end

of Section 4. Several additional features of the procedure are taken

into account in its coding . For exas~ le, the averages Aver 1 and Aver 2

J can be updated fairly easily without computing from scratch. It is

observed that

Aver 1new = Aver 1old + 
~~ Z~ - 

~~~~~~ 

Z~~)

and

1sum 2 = sum 2 - ~~ Znew o i€12

where sum 2 = Aver 2 * (n - 1111). The scalar A in step 4 can be

• chosen to be any number between max ~~ and mm Z~~. Finally,

- - _ 
1<i<n l<i<n

in testing 12 ~ 0 and IS ~ ~ in steps 6 and 8 respectively, it

suffices to test lIl i new > lIll old and IIO~ > 10

The data are generated in the following way: for j  = 1,...,n,

€ (0,2), A~ € (0,2) and B~ € (0,3) are randomly chosen in the

39
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intervals; = + where C (0 ,3) is also randomly pro duced;

finally, Z~ = A~ + B~Cx~ and Z~ A~ + ~~~~ The outputs of the

experiments are summarized in Table 2. Again , the cpu times show very [
encouraging results. A comparison of the performance of our algorithm

and, that of Cheng’s sorting procedure will be reported elswhere. [

) iteration steps Cpu 
—- 

— and sizes of * * time
n subproblems 1

21 I I ;  (sec)

- 
-‘

4 1000 1st iter 553 315 3314 .15
2’

~~ 
iter 676

3
rd iter 685

]280 1st iter 6148 501 422 .18

2’~ iter 775
3 iter 779

2560 1st iter 1558 967 11482 .28 [
2 iter 1593

1st iter 2556 214-67 214-60 .57

2’~ iter 2652
rd.3 iter 2o53

lO2~iO 1st 5900 3158 3478 1.15

3
rd iter 7082

TABLE 2: Cheng’ r quadratic program with randomly generated data.

‘ 1
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